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Abstract
The communication processes of knowledge creation represent a particular class of human

dynamics where the expertise of individuals plays a substantial role, thus offering a unique

possibility to study the structure of knowledge networks from online data. Here, we use the

empirical evidence from questions-and-answers in mathematics to analyse the emergence

of the network of knowledge contents (or tags) as the individual experts use them in the pro-

cess. After removing extra edges from the network-associated graph, we apply the methods

of algebraic topology of graphs to examine the structure of higher-order combinatorial

spaces in networks for four consecutive time intervals. We find that the ranking distributions

of the suitably scaled topological dimensions of nodes fall into a unique curve for all time

intervals and filtering levels, suggesting a robust architecture of knowledge networks. More-

over, these networks preserve the logical structure of knowledge within emergent communi-

ties of nodes, labeled according to a standard mathematical classification scheme. Further,

we investigate the appearance of new contents over time and their innovative combinations,

which expand the knowledge network. In each network, we identify an innovation channel

as a subgraph of triangles and larger simplices to which new tags attach. Our results show

that the increasing topological complexity of the innovation channels contributes to net-

work’s architecture over different time periods, and is consistent with temporal correlations

of the occurrence of new tags. The methodology applies to a wide class of data with the suit-

able temporal resolution and clearly identified knowledge-content units.

Introduction
The knowledge creation through online social interactions represents an emerging area of
increased interest both for technological advances and the society [1] where the collective
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knowledge is recognised as a social value [2–4]. Recently studied examples include the knowl-
edge accumulation in systems with direct questions-and-answers [5], crowdsourcing scientific
knowledge production [6, 7] and scientific discovery games [8]. Similar phenomena can be
observed in business/economics-associated online social networking [9–11]. On the other
hand, the study of the collective knowledge creation opens new topics of research interests. In
particular, it provides ground to examine a novel type of collective dynamics in social systems
in which each actor possesses certain limited expertise. In the course of the collaborative social
efforts to solve a problem, such as communications through questions-and-answers that we
consider here, the tacit knowledge and the expertise of individual actors are externalised and
dynamically shared with other participants who take part in the process. When a systematic
tagging applies to the shared cognitive contents, the process leads to an explicit knowledge [3]
as the output value (the network of knowledge contents), from which others can learn. Further-
more, the dynamics underlying knowledge creation exemplifies multi-scale phenomena related
to the cognitive recognition, which may occur in a wider class of systems, social, biological and
physical [17].

By the nature of the underlying stochastic processes, the knowledge networks that emerge
through the collaborative social endeavours necessarily reflect the expertise and the activity
patterns of the involved participants. Furthermore, these networks tend to capture the logical
relationship among the used cognitive contents as it resides in the mind of each participating
individual. In this regard, these networks substantially differ from the commonly studied
knowledge networks, which are produced in ontological initiatives [12–14] such as those from
the online bibliographic data and Wikipedia, or the mapping citation relationships between
journal articles [15], to name a few. Also, the stochastic process of knowledge creation through
questions and answers are different from the spreading dynamics of scientific memes, whose
inheritance patterns are identified in citation networks [16].

In recent work [5], we have shown that the knowledge creation by questions-and-answers
involve two-scale dynamics, in which the constitutive social and cognitive elements (individual
experts or actors and the knowledge contents that they use) interact and influence each other
on the original scale. This complex system evolves in a self-organised manner leading to the
emergence of socio-technological structures where the involved actors share the accumulated
knowledge. These structures are visualised as communities on the related bipartite network of
actors and their artefacts [5]. Furthermore, the advance of innovation in this process, which
builds on the expertise of the involved participants, leads to the expansion of the knowledge
space by adding new cognitive contents. The central question for the research and applications
of the collective knowledge creation is how these stochastic processes work and potentially can
be controlled to converge towards the desired outcome. Furthermore, what is the structure of
the emergent knowledge that can be used by others?

A part of the answer relies on the structure of the networks, co-evolving with the knowl-
edge-sharing processes among the actors possessing the required expertise. In [5] the empirical
data from the Stack Exchange site Mathematics (http://math.stackexchange.com/) were down-
loaded and analysed, as a prototypal example. The sequence of events in the process of ques-
tions-and-answers (Q&A) suitably maps onto a growing bipartite network of actors, as one
partition, and their questions and answers, as another partition. The emergent communities on
these networks have been identified, consisting of the involved actors and the connected ques-
tions-and-answers. As a rule, in each community a dominant actor is found, representing an
active user with a broad expertise. The knowledge elements of each question are specified
according to the standard mathematical classification scheme by one to five tags (for instance,
“functional analysis”, “general topology”, “differential geometry”, “abstract algebra”, “algebraic
number theory”). Consequently, the expertise of the actor can be specified as a combination of
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tags that the actor had frequently used. Assuming that a minimal matching applies among the
actor’s expertise and the contents of the answered question, and using theoretical modelling
based on the empirical data, it was shown [5] that the emergent communities and the knowl-
edge that they share strongly depend on the population of the involved experts and their activ-
ity patterns.

In this work, using the same empirical dataset, our focus is on the networks of cognitive ele-
ments (tags) that emerge in these processes with questions-and-answers. Different from the
aforementioned bipartite networks, these emergent knowledge networks contain subelements
of both partitions, namely, knowledge contents of questions as well as a measure of the users’
expertise. Such networks, supported by the current information and computer technology
(ICT) systems, embody the collective knowledge that emerges via the cooperative social efforts
and can be used by others to learn. Moreover, the relevance and speed of knowledge acquisition
from these networks may be more efficient than from the networks generated through wide-
scale ontological plans and efforts. We apply the techniques of algebraic topology of graphs
[18–22] to investigate higher-order structures that characterise the connection complexity
between knowledge elements in the emergent networks. Specifically, we aim to determine

• the metrics to quantify the higher-order combinatorial structures which contain the logical
units of knowledge as the actors use them in communication;

• the role of innovative contents brought over time by the experts in building the network
architecture.

In addition to the standard graph-theoretic metrics and community detection in the emer-
gent networks of knowledge units, we describe their hierarchical organisation using several
algebraic topology measures. Further, we identify the appearance of new tags over time and
investigate the subgraphs (innovation channels) where these new cognitive elements attach to
the existing network. By tracking topology measures over the consecutive time periods for the
innovation channel together with the topology of the entire network, we quantify the impact of
the new-added contents. Our main findings indicate that the networks of cognitive elements
map to a nontrivial hierarchical architecture which contains aggregates of high-order cliques.
The increasing structural complexity of these networks over time, owing to the innovation
expansion, is consistent with the logical structure of knowledge that they contain and temporal
correlations in the appearance of new cognitive contents.

In the following, the networks of tags are built from the empirical data for four successive
one-year periods. At the initial stage, the networks are filtered to remove redundant links. At
the next stage, network measures are obtained at the graph level, and the community structure
is determined. At the final stage, the algebraic topology analysis of these networks for different
periods and filtering levels is performed. The analysis is focused on the subgraphs, which are
related to the appearance of new tags, representing the innovation channels of these networks.

Emergence of the tags networks

The Q&A process and structure of the empirical data
In this work, we have constructed knowledge networks from the empirical data, which are col-
lected and described in Ref. [5]. In the data, the knowledge contents are mathematical tags
used in the communications on Q&A systemMathematics Stack Exchange. In particular, the
content of each question is specified (tagged) by one or more (maximum five) tags according
to the standard mathematical classification scheme. While in Ref. [5] we investigated the role
of expertise in the social process taking part on the co-evolving bipartite network of users-and-
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questions, here we focus on the network of tags as the elementary units of knowledge that are
used by the actors in this process. With the help of the agent-directed modeling, in Ref. [5] we
have demonstrated that the considered empirical process obeys the fundamental assumption
of knowledge creation, i.e., that at least minimal matching between the contents of the question
and the expertise of answering actor occurred in each event. Therefore, the emergent network
of tags reflects the way in which these knowledge units are used in the process and, indirectly,
the expertise of the social community. Moreover, the architecture of the emergent network of
tags is expected to mirror the logical structure of knowledge, as it is presented by the experts
involved in the knowledge-creation process.

To be consistent with the previous studies and the associated analysis of Ref. [5], we use the
same dataset that was downloaded on May 5, 2014, from https://archive.org/details/
stackexchange and contains all user-contributed contents on Mathematics since the establish-
ment of the site, July 2010, until the end of April 2014. Specifically, the considered dataset con-
tains 269818 questions, posted and answered by 77895 users, 400511 answers, and 1265445
comments. For the present analysis, from the available high-resolution data we use the infor-
mation about questions, i.e., ID of each question, its content as a list of tags, and time stamp.
The tags and their combinations define the knowledge landscape whose size is not constant but
increases with time and the number of posted questions. In this way, the innovation increases
as the key feature of the collective knowledge creation [5]. By investigating the network of tags,
here we examine how the knowledge creation can be expressed by the topological complexity
of the expanding knowledge landscape.

Mapping data to networks of tags is performed within four consecutive periods; a period is
one-year long. First, the questions that are posted within the considered year period are
selected, and a unique set of tags that are involved in these questions is formed. Each tag repre-
sents a node of the tags network. Two tags (i, j) are linked by multiple connections wij, where
the link multiplicity wij = 0, 1, 2, � � � represents the number of common questions in which the
considered pair of tags appeared in the selected dataset. The resulting networks are termed
tagNetY-k, where k = 1, 2, 3, 4 indicates the considered year period.

Graph measures of tags networks without redundant connections
The raw networks of tags contain a large number of redundant connections leading to a large-
density graph, cf. an example in Fig 1. To move forward, we first apply an advanced procedure
to eliminate the potentially redundant links.

Filtering redundant connections in a network of tags is motivated by the following facts. In
the data, the number of tags is between 500 and 1000 while the number of posted questions per
year are between 15 and 120 thousand, which results in a quite dense network of tags. On the
other hand, a broad distribution of the tags frequencies [5] suggests that a relatively small num-
ber of tags occurs quite frequently. Among the most frequent tags are “homework”, “proof-
writing”, “reference-request”, and “terminology”, which are not related to any particular field
of Mathematics but rather determine the type of question asked. For this reason, these tags can
occur in many different combinations of tags, thus increasing the network’s density. Here, we
apply an algorithm to decrease the network’s density by identifying the edges that do not incur
as a result of a random process. For this purpose, the weighted network is considered as a mul-
tigraph where the weight wij represents a multiplicity of links between the pair of nodes (i, j).
We apply the filtering technique described in Ref. [23]; it utilizes a random configurational
model for weighted graphs that preserves the total weight of the realised links,W = ∑k sk, as
well as the node’s strength sk = ∑j wij on average. To avoid the influence of the filtering on
higher structures, we apply the algorithm to each link independently.
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A pair of nodes (i, j) is selected proportionally to their strengths si and sj. In the considered
network, the selected pair is connected by the weighted link of the multiplicity wij. In the ran-
dom configurational model, the occurrence of a link with multiplicitym between the selected
pair of nodes is given by the conditional probability

Pijðmjsi; sj;WÞ ¼ W
m

� �
sisj
2W2

� �m

1� sisj
2W2

� �W�m

: ð1Þ

Then the probability that the realised weight wij of the link (i, j) occurred by chance (p-
value) according to the marginal distribution given by Eq (1) is computed as [23]

PrðwijÞ ¼
X
m�wij

Pijðmjsi; sj;WÞ: ð2Þ

The links for which the probability Pr(wij) appears to be larger than a preset confidence level
p are removed. The remaining edges, which satisfy the condition Pr(wij)� p, represent the fil-
tered network with the specified confidence level. Here we examine the structure of the filtered
networks obtained for several values of the parameter, p 2 {0.1, 0.05, 0.01}. As an example, the
right panel in Fig 1 shows the first year network after the filtering procedure with the confi-
dence level p = 0.1.

The networks of tags for different periods and filtered at various confidence levels are ana-
lysed by algebraic topology techniques, as presented in the following Sections. In this regard,
we turn the weighted networks into binary graphs, which retain all important topological fea-
tures of the weighted graphs while making the computation less demanding. Here, we first
show that the filtering process leads to a reduced-density graph but preserves the relevant
(nonrandom) connections. Specifically, the thematically connected groups of nodes (cf. labels
of nodes in Figs 1 and 2) appear to form distinct communities on the network. In these

Fig 1. The network tagNetY-1: a close-up of unfiltered network near some large nodes (left) and the whole network filtered at confidence level
p = 0.1 (right).

doi:10.1371/journal.pone.0154655.g001
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networks, mostly non-overlapping communities occur. Consequently, they are suitably identi-
fied by methods based on the optimisation of the modularity [24–26]. A module is recognised
as a densely connected group of nodes that are sparsely connected to nodes in other groups
[27]. For a better comparison of different networks, the communities are systematically deter-
mined at the same resolution parameter (standard resolution 1.0 in Gephi, the open graph
visualization platform http://gephi.org). This large-scale clustering of the knowledge networks
appears systematically during the network growth. See also the structure of innovation chan-
nels studied in the following Section.

For comparison, in Table 1 we summarise the standard graph-theoretic measures [27] of
the networks of tags for four consecutive periods and the confidence level p = 0.1. Note that the
network of tags grows over years by the appearance of new tags, but also shrinks by the number
of tags that appeared in the previous period and were not used in the current period.

Fig 2. The community structure of the network of tags for the fourth period, which is filtered at p = 0.1. In each community, the
mutually connected cognitive contents (mathematical tags) are indicated by the nodes’ labels.

doi:10.1371/journal.pone.0154655.g002
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Topology of the tags networks
In addition to the standard graph-theoretic analysis, cf. Table 1, we apply techniques of alge-
braic topology to determine simplices and simplicial complexes, which describe higher order
structures of these networks. Definitions and detailed explanation of topological quantities
used in this presentation may be found in Ref. [19] and references within. The simplices are
identified as maximal cliques of all orders, i.e. dimensions. Then the topological complexity of
the simplicial complex constructed from the complex network is quantified by the number of
cliques at each topological level (dimension) q, starting at q = 0 up to the qmax − 1. A clique at
level q = 0 is an isolated node while q = 1 is a link, q = 2 is a triangle and so on up to the level
qmax − 1 representing the largest clique found in the network.

Algebraic topology measures
We use the Bron-Kerbosh algorithm [21, 22] to determine cliques of all orders that are present
in the studied network. The resulting matrix of maximal cliques (MC) thus contains informa-
tion about the identity index of each clique as well as the identity index of each node that par-
ticipates in that clique. Using rich information of the MC matrix, we can characterise the
topological spaces around each node as well as the organisation of cliques in the entire network
at each topological level. These goals are achieved by determining several node-related quanti-
ties [19] in addition to the commonly defined structure vectors of the network [18–20, 28].

In particular, the topology vector Qi is associated with the node i

Qi ¼ fQi
qmax�1;Q

i
qmax�2; � � � ;Qi

0g ; ð3Þ

where the components Qi
k, k = 0, 1, � � �qmax − 1, describe the number of k-dimensional cliques

in which the node i participates. Then the influence of a node in the overall network architec-
ture is quantified by topological dimension dimQi of the node i, which is introduced in [19]; it is
defined as the total number of all cliques in which the node i participates

dimQi ¼
Xqmax�1

q¼1

Qi
q: ð4Þ

To demonstrate the relevance of nodes, we compute the topological dimension of each node
in the original and filtered network of tags for the first-year interval, which are shown in Fig 1.
The components at each q level of the top 40 nodes (tags), ordered according to their topologi-
cal dimension, are displayed by three-dimensional plots in Fig 3. As this figure shows, the
applied elimination of the links reduces not only the node’s topological dimension but also
changes the structures at q-levels where the considered node is present. Consequently, the

Table 1. The graph-level measures for tags networks for four consecutive periods, filtered at confidence p = 0.1.

Net N hki hℓi d Cc ρ M

TagNetY-1 582 10.07 3.02 6 0.365 0.018 0.439

TagNetY-2 702 14.45 2.86 5 0.365 0.021 0.441

TagNetY-3 856 20.09 2.72 5 0.351 0.023 0.436

TagNetY-4 1033 22.52 2.68 5 0.338 0.022 0.422

The number of nodes N, average degree hki, average path length hℓi, diameter d, clustering coefficient Cc, graph density r ¼ L
NðN�1Þ, and modularity M =

∑i (eii − (∑j eij)
2), where the summation runs over different communities.

doi:10.1371/journal.pone.0154655.t001
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ranking order of a particular node can be changed (see the corresponding lists of nodes in
Table 2), which is compatible with the altered importance of that node in the filtered network.

We further compare the role of individual nodes in the networks evolving over time, which
are filtered at different confidence levels, i.e., p = 0.1, p = 0.05 and p = 0.01. We determine the
topological dimensions of all nodes in the corresponding filtered networks for the four succes-
sive year-periods. The ranking distributions of the node’s topological dimensions are displayed
in Fig 4a. This Figure shows that, first, nodes with a gradually higher topological dimension
appear at later periods, suggesting that topological complexity of tags networks increases over
years. Furthermore, within each year, the reduced confidence level p results in a simpler struc-
ture of the nodes’ neighbourhood (and possible shifts in the ranking order of nodes, as

Fig 3. ComponentsQi
q of the first 40 tags ranked by their topological dimQi for the tagNetY-1 network

filtered at p = 0.1 (a) and with no filtration (b).

doi:10.1371/journal.pone.0154655.g003

Table 2. Names of the first twenty tags ordered according to their topological dimension in the network of tags before filtering and after filtering at
the indicated confidence level p has been performed.

before filtering p = 0.1 p = 0.05 p = 0.01

calculus number theory number theory geometry

linear algebra geometry geometry number theory

analysis algebraic topology functional analysis calculus

homework combinatorics sequences and series algorithms

reference request abstract algebra combinatorics functional analysis

probability functional analysis algebraic topology abstract algebra

sequences and series algebra precalculus abstract algebra reference request

geometry group theory differential geometry real analysis

functions real analysis calculus algebra precalculus

real analysis differential geometry real analysis logic

combinatorics logic probability sequences and series

abstract algebra sequences and series algebraic geometry probability

number theory soft question algebra precalculus linear algebra

terminology probability algorithms algebraic topology

complex analysis integration soft question combinatorics

general topology algorithms logic complex analysis

category theory complex analysis analysis dierential geometry

algebraic geometry analysis complex analysis soft question

discrete mathematics differential equations integration discrete mathematics

logic calculus differential equations analysis

doi:10.1371/journal.pone.0154655.t002
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mentioned above). However, all networks exhibit a broad ranking distribution of the node’s
topological dimension with a power-law section. The distributions are fitted by the discrete
generalised beta function

f ðxÞ ¼ ax�b N þ 1� xð Þc ð5Þ

with different parameters a, b and c. The robustness of the observed scaling feature is further
confirmed by the scaling collapse of all curves to a master curve, shown in Fig 4b. The scale-
invariant ranking, where the node’s topological dimension is scaled by the maximal dimension
found in the corresponding network, suggests that the relative topological complexity of the
tags networks is preserved over time and the degree of filtering.

Topological spaces in the filtered networks of tags
To characterise the structure of the topological levels q = 0, 1, 2, � � �K of the entire graph, we
compute three commonly used structure vectors [18–20, 28, 29]. In particular, the first struc-
ture vector

Q ¼ fQq¼K ;Qq¼K�1; � � � ;Qq¼1;Qq¼0g ð6Þ

has K + 1 components that describe the number of q-connected classes, where K + 1 = qmax

indicates the size of the maximal clique found in the graph. Furthermore, the components of
the second structure vector

Ns ¼ fnq¼K ; nq¼K�1; � � � ; nq¼1; nq¼0g ð7Þ

designate the number of simplexes from the level q up to the top level. The third structure vec-
tor is often defined such that its q-level component

Q̂q ¼ 1� Qq

nq

ð8Þ

determines how the simplices of higher order are connected at the level q. Fig 5 summarises the
components of two structure vectors for the tags networks emerging over different periods and
varied filtering level p.

Fig 4. Ranking distributions of the topological dimension of tags dimQi for all years and all p values
(a) and scaled distribution dimQi/max(dimQi) of all data (b). The legend abbreviations: 1Yp001 indicates
the first-year network filtered at the level p = 0.01, and so on. Fit lines are according to the discrete
generalised beta function (5); in panel (a) the parameter b = 0.67 ± 0.03 and c varies from 0.32 for 1Yp001
and 0.71 for 2Yp001 to 0.82 for 3Yp001 and 4Yp001, with error bars ±0.03.

doi:10.1371/journal.pone.0154655.g004
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By comparing the curves for different one-year periods but fixed filtering level, say p = 0.1,
we observe that the network topological complexity increases over time. It manifests in the
increased number of connectivity classes (components of the first structure vector) at all topo-
logical levels as well as the shift of the maximum from q = 2 (triangles), in the first year, to
q = 3 (tetrahedra) and q = 4 (5-cliques), in the fourth year. At the same time, we observe that
the number of topological levels increases as well as the connectivity among the cliques at each
topology level, cf. the third structure vector in the Fig 5b.

On the other hand, by decreasing the filtering confidence level p, a more sparse network is
obtained having a smaller number of topological levels and a reduced number of simplicial
complexes. However, they proportionally preserve the above-described tendency of the
enhanced complexity of combinatorial spaces over time. The corresponding curves for p = 0.05
and p = 0.01 are also shown for each year-period in Fig 5. According to the structure vectors in
Fig 5, all filtered networks exhibit a systematic shift towards richer topology in later years.
Once again, these results confirm the structural stability in Fig 4 of the emergent networks of
tags, which complements the logical organisation of knowledge contents in the communities in
these networks, demonstrated in Fig 2 and in the following Section.

Clustering of the innovative contents

Three aspects of innovation in the knowledge creation
The innovation growth [5, 30] is a crucial element of the process of knowledge creation. In the
voluntary system, the innovation that comes from the expertise of the actors involved in the
process was shown [5] to expand the knowledge space over time. To quantify the impact of
innovation onto the architecture of the emerging knowledge networks, we consider the follow-
ing three aspects of the innovation:

• the appearance of new tags due to the actor’s expertise;

• the occurrence of new combinations of tags expanding the knowledge space;

• the emergence of new combinatorial topological structures enriching the architecture of the
knowledge network.

In the following, we discuss in detail these features of innovation.

Fig 5. The components of (a) the first structure vectorQq and (b) the third structure vector bQq ¼
1� nq=Qq plotted against the topology level q for each year period and three filtering levels p = 0.1,
0.05, 0.01. The legend abbreviations are explained in connection to Fig 4.

doi:10.1371/journal.pone.0154655.g005
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Fig 6a contains time sequence of the first appearance of tags that are present in the data of
each one-year period. Naturally, the sequence for Year-1 is the shortest, while the sequence for
Year-4 is the longest, since some tags that are present in Year-4 appeared in the earlier periods.
The time series contains the number of new tags appearing in the sequence of two-day time
intervals. The fractal analysis of these time series and their power spectrum, shown in Fig 6b
and 6c suggest that the appearance of new tags is not random but exhibits long-range temporal
correlations. Specifically, the plots in Fig 6b represent the fluctuation function F2(n) of the
standard deviations of the integrated time series at the interval of length n. They reveal scaling
regions (of different length for each time series) which permit determination of the Hurst expo-
nent via F2(n)*nH. Values of the Hurst exponentH indicated in the legend suggest the fractal
structure of the fluctuations. It appears that the fractality increases over time from nearly ran-
dom time series with H = 0.51 ± 0.01 in Year-1, to strongly persistent fluctuations with
H = 0.72 ± 0.02, in Year-4.

Similarly, power spectra of these time series in Fig 6c exhibit long-range correlations accord-
ing to S(ν)* ν−f with two distinct exponents in high and low frequency regions. While the
low-frequency feature is similar for all considered periods, the pronounced scaling in the high-
frequency region gradually builds over years.

The number of unique combinations of tags was examined in the whole dataset and plotted
against the number of posted questions in Fig 6d. The plot exhibits a power-law
behaviourNTC � Na

Q in the range above 102 posted questions. It represents the Heaps’ law

which appears to be in agreement with the ranking distribution of frequencies of the unique
combinations of tags, i.e., the Zipf’s law, as discussed in [5]. The occurrence of Heaps’ law is a
manifestation of the innovation growth [5, 30] in the process of Q&A. The exponent α< 1
indicates a sublinear growth of innovation with the number of posted questions. This depen-
dence suggests that a fraction of displayed items brings new combinations of tags while the
remaining questions use the already identified combinations.

Fig 6. The temporal sequence of the appearance of new tags present in the networks for Year-1, Year-2,
Year-3 and Year-4 periods (a). Temporal resolution is two days. The scaling of the standard fluctuation
function (b) and the power spectrum (c) of these time series. Panel (d) displays increase in the number of new
combinations of tags as a function of the number of questions over time.

doi:10.1371/journal.pone.0154655.g006
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The structure of innovation subgraphs
The appearance of new tags in the Q&A process leads to the expansion of the knowledge net-
work. In particular, the network grows by the addition of new nodes (cf. Table 1), as well as by
increasing its topological complexity measured by the presence of simplicial complexes of a
high order. In the remaining part of this section, we investigate how the new tags attach to the
existing nodes and affect the formation of higher order structures in the knowledge network.
For this purpose, we first define an innovation channel as a subgraph related with the new tags
appearing at the end of a considered one-year period. Specifically, the subgraph in the network
(filtered at p = 0.1) contains newly added tags together with the tags to which they attach and
form simplices larger than a single link (i.e., triangle or higher dimensional structure). The two
plots in Fig 7 show the structure of the innovation channels at the beginning of Year-2 and
Year-3 periods, respectively.

The innovation channels in Fig 7 grow over a one-year period; moreover, the innovative
nodes stick with the rest of the network (previously existing nodes and links) making with
them a tight structure that involves higher-order combinatorial spaces up to the largest cli-
que. The community structure in the innovation subgraphs, which is demonstrated in Fig 7,
reflects the thematic grouping of the entire knowledge network, as presented in Fig 2. For
example, the newly added tag “cohomology” sticks to the group where we also find “algebraic
topology”, “differential geometry”, “abstract algebra”, “complex geometry” and other themat-
ically related tags, cf. the lower left community in Fig 7 right panel. On the other hand, the
added tag “computational complexity” links to the community with “discrete mathematics”,
“algorithms”, “logics”, “combinatorics”, “computer science” and others, cf. the rightmost
community in the same Figure. Similarly, the node labels in all identified communities con-
firm their thematic closeness. Therefore, the expansion of the knowledge network by the
addition of innovative contents systematically obeys the overall logical structure of (mathe-
matical) knowledge. As mentioned earlier, the core of this feature of knowledge creation lies
in the crucial role of the actor’s expertise in the process of meaningful cognitive-matching

Fig 7. The structure of the innovation channel at the beginning of Year-2 (left) and Year-3 (right). New tags
were added to the filtered tags network of the previous year, forming structures of higher dimension than a triangle.
Communities of well-connected nodes show the logical grouping of mathematics subject categories, indicated by
labels on nodes.

doi:10.1371/journal.pone.0154655.g007
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actions. The logical structure of individual knowledge of each actor gets externalised during
the process of Q&A.

According to the results in Fig 6, the appearance of innovative contents boosts the process
of knowledge creation, leading to the observed temporal correlations, characteristic of collec-
tive dynamics. Analogously, here we show that the structure of innovation channels enriches
the topological spaces of the knowledge network. In Figs 8 and 9 we summarise the topological
measures of the innovation channels and compare them with the corresponding measures of
the entire network. In addition to the structure vectors defined in Eqs (6)–(8), here we also con-
sider the topological “response” function fq to express the shifts in the topology at each level q
in response to the changes in the network size. Formally, fq is defined [20] as the number of
simplices and shared faces at the level q.

Interestingly enough, the third structure vectors in Fig 8a and 8c show that the correspond-
ing channels exhibit a better connectivity up to the level q = 4 of 5-clique than the background
network. This feature of the innovation channels suggests the leading role of the innovative
tags in the observed increase of the topological complexity of the network over years. This con-
clusion compares well with the number of connectivity classes at different topological levels,
namely the first structure vectors in Fig 8b and 8d. The topology of the channel determines the
most ubiquitous structure in the entire network, corresponding to the peak in the first structure
vector. Furthermore, the increase of the topological complexity of the knowledge graphs over
consecutive periods is illustrated by the topological “response” function fq, which is shown in

Fig 8. (a) and (c) The third structure vector and (b) and (d) the first structure vector for the networks of tags in Year-2 (left panels) and Year-4 (right
panels) and the corresponding innovation channels above the level q = 2 and q = 3.

doi:10.1371/journal.pone.0154655.g008
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Fig 9. It manifests in the increase of the number of topology levels, as well as the number of
simplices and shared faces at each topology level. Also, the maximum of the function fq shifts
towards more complex structures, i.e., from triangles at Year-2 to tetrahedra in Year-4. As the
plots in the lower panel of Fig 9 show, these topological shifts in the networks of different peri-
ods are tightly reflected in the structure of the corresponding innovation channels.

Conclusions
Information processing underlines the evolution and structure of various social networks [31–
33]. The creation of knowledge through questions-and-answers requires meaningful interac-
tions with the actor’s expertise adjusted to the needs of other participants; consequently, it
leads to the accumulation of the sound knowledge and the expansion of knowledge space [5].
In the studied example, we have demonstrated how the algebraic topology measures can char-
acterise the connection complexity of the emergent knowledge networks. Using the data of
questions-and-answers from the Stack Exchange system Mathematics, we have shown how the

Fig 9. Response fq plotted against the topology level q for networks of Year-2, Year-3, and Year-4 (top panel) and for the corresponding
innovation channels scaled with the year maximum value (bottom panel).

doi:10.1371/journal.pone.0154655.g009
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network of mathematical tags, as constitutive elements of knowledge, appears and evolves with
the actor–question–actor-answer interactions over time.

The connections among different tags reflect their use by the actors possessing the expertise,
which (at least partially) overlaps with the contents of the considered question. The networks
of tags are filtered by removing the extra edges which may have appeared by chance with a
specified confidence level. We have applied the filtering at the level of (uncorrelated) edges to
preserve the higher-order structures, which have been the focus of this study. Our results reveal
that the process preserves the genuine structure of knowledge networks consisting of themati-
cally connected tags communities. For example, five communities in Fig 2 appear in the filtered
network of tags in Year-4. Considering the higher-order topological spaces, the filtered net-
works of tags exhibit a robust structure. The hierarchy of nodes sorted out according to their
suitably scaled topological dimension is represented by a unique curve, independent of the evo-
lution time and the filtering level.

The appearance of new contents (tags) over time plays a significant role in the process of
knowledge creation and the related networks. As it was shown in [5], the occurrence of new
contents and new combinations of contents are chiefly related to the expertise of newly arriving
users. Therefore, the introduced combinations of tags obey the logical structure as it is pre-
sented by the participating experts. The growing number of unique combinations leads to the
advance of innovation [5], as also shown in Fig 6d. Moreover, their appearance is conditioned
by the cognitive-matching interactions and the user’s activity patterns. These features of the
social dynamics are manifested in the non-random (persistent) fluctuations and long-range
temporal correlations, as demonstrated in Fig 6a, 6b and 6c. Further, the performed algebraic
topology analysis has revealed the role of these innovative contents in building the architecture
of knowledge network. Specifically, we have found that:

• the newly appearing tags connect to the current network at all levels from a single link to the
cliques of the highest order;

• the innovation channel is recognised as a subgraph containing simplices larger than or equal
to a triangle in which at least one of the new tags occurred; its growth and the increased topo-
logical complexity over time provides the evolution pattern of the entire network;

• the growth of the innovation channel is consistent with enhanced fractal features and tempo-
ral correlations of the appearance of new contents over time; it systematically obeys the sensi-
ble connections of contents, as also demonstrated in Fig 7.

The presented results reveal that the creation of new combinations of knowledge contents
(or innovation) is compatible with the non-random correlations in the sequence of new con-
tents and their linking to the knowledge network. Hence the innovation expansion, as a core of
each knowledge-creation process, can be additionally quantified by the fractal features of time
series of new tags as well as the algebraic topology measures of the network’s innovation chan-
nel. Hidden beneath these quantifiers of the emergent knowledge networks is the dynamics of
human actors and their expertise, which provides the logical structure of the collective knowl-
edge. Our approach consists of the appropriate data filtering, fractal analysis of time series, and
algebraic topology techniques applied to the emergent knowledge networks and their innova-
tive channels. The methodology can be useful to the analysis of a wide class of networks where
the actors and their artefacts, as well as the cognitive elements used in the process, are clearly
identified. These may include, among others, networks created by science, engineering, busi-
ness and economics communities based on online collaborations. Further, such examples may
also include a collection of articles (e.g. journal articles) referring to each other, where their
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logical units are marked. In some such situations, keywords, memes, and concepts can be iden-
tified by machine learning methods.
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